[1] Candès E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. [2] Candès E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians, 2006. [3] Candès E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509. [4] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [5] Elad M, Figueiredo M A, Ma Y. On the role of sparse and redundant representations in image processing[J]. Proceedings of the IEEE, 2010, 98(6):972-982. [6] Blumensath T. Compressed sensing with nonlinear observations and related nonlinear optimization problems[J]. IEEE Transactions on Information Theory, 2013, 59(6):3466-3474. [7] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10):707-710. [8] Herrity K K, Gilbert A C, Tropp J A. Sparse approximation via iterative thresholding[C]//2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, 624-627. [9] Wright S J, Nowak R D, Figueiredo M A. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. [10] Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[M]. Boston:Now Publishers Inc, 2011. [11] Smola A J, Schölkopf B. Sparse greedy matrix approximation for machine learning[C]//Proceedings of the 17th International Conference on Machine Learning, 2000, 911-918. [12] Tipping M. Sparse bayesian learning and relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1:211-244. [13] Yuan X T, Liu X B, Yan S C. Visual classification with multitask joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10):4349-4360. [14] Bishop C M. Pattern recognition[J]. Machine Learning, 2006, 128:1-58. [15] Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6):1031-1044. [16] Pham D S, Venkatesh S. Joint learning and dictionary construction for pattern recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1-8. [17] Patel V M, Chellappa R. Sparse representations, compressive sensing and dictionaries for pattern recognition[C]//First Asian Conference on Pattern Recognition, 2011, 325-329. [18] Bienstock D. Computational study of a family of mixed-integer quadratic programming problems[J]. Mathematical Programming, 1996, 74(2):121-140. [19] Brodie J, Daubechies I, De Mol C, et al. Sparse and stable Markowitz portfolios[J]. Proceedings of the National Academy of Sciences, 2009, 106(30):12267-12272. [20] Gao J J, Li D. Optimal cardinality constrained portfolio selection[J]. Operation Research, 2013, 61(3):745-761. [21] Xu F M, Lu Z S, Xu Z B. An efficient optimization approach for a cardinality-constrained index tracking problem[J]. Optimization Methods and Software, 2016, 31:258-271. [22] Li D, Sun X L, Wang J. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection[J]. Mathematical Finance, 2006, 16(1):83-101. [23] Zhao Z H, Xu F M, Li X Y. Adaptive projected gradient thresholding methods for constrained ℓ0 problems[J]. Science China Mathematics, 2015, 58(10):1-20. [24] Kim S J, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point method for large-scale ℓ1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):606-617. [25] Liu J, Chen J H, Ye J P. Large-scale sparse logistic regression[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009. [26] Bunea F. Honest variable selection in linear and logistic regression models via ℓ1 and l1+ l2 penalization[J]. Electronic Journal of Statistics, 2008, 2:1153-1194. [27] Misra J. Interactive exploration of microarray gene expression patterns in a reduced dimensional space[J]. Genome Research, 2002, 12(7):1112-1120. [28] Beck A, Vaisbourd Y. The sparse principal component analysis problem:Optimality conditions and algorithms[J]. Journal of Optimization Theory and Applications, 2016, 170(1):119-143. [29] Zou H, Hastie T, Tibshirani R. Sparse principal component analysis[J]. Journal of Computational and Graphical Statistics, 2006, 15(2):265-286. [30] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30. [31] Bahmani S, Boufounos P T, Raj B. Learning model-based sparsity via projected gradient descent[J]. IEEE Transactions on Information Theory, 2016, 62(4):2092-2099. [32] Agarwal A, Negahban S, Wainwright M J. Fast global convergence rates of gradient methods for high-dimensional statistical recovery[C]//Advances in Neural Information Processing Systems, 2010, 37-45. [33] Negahban S N, Ravikumar P, Wainwright M J, et al. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[J]. Statistical Science, 2012, 27(4):538-557. [34] Natarajan B K. Sparse approximate solutions to linear systems[J]. SIAM Journal on Computing, 1995, 24(2):227-234. [35] 文再文, 印卧涛, 刘歆, 等. 压缩感知和稀疏优化简介[J]. 运筹学学报, 2012, 16(3):49-64. [36] 许志强. 压缩感知[J]. 中国科学, 2012, 42(9):865-877. [37] 马坚伟, 徐杰, 鲍跃全, 等. 压缩感知及其应用:从稀疏约束到低秩约束优化[J]. 信号处理, 2012,28(5):609-623. [38] 秦林霞. 非负稀疏优化的精确松弛理论研究[D]. 北京:北京交通大学, 2013. [39] 于春梅. 稀疏优化算法综述[J]. 计算机工程与应用, 2014, 50(11):210-217. [40] Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6):948-958. [41] Foucart S, Rauhut H. A Mathematical Introduction to Compressive Sensing[M]. Boston:Birkhäuser Basel, 2013. [42] Eldar Y C, Kutyniok G. Compressed Sensing:Theory and Applications[M]. Cambridge:Cambridge University Press, 2012. [43] Zhao Y B. Sparse Optimization Theory and Methods[M]. Florida:CRC Press, 2018. [44] Rockafellar R T, Wets R J. Variational Analysis[M]. New York:Springer, 1998. [45] Clarke F H. Optimization and Nonsmooth Analysis[M]. Hoboken:Wiley, 1983. [46] Clarke F H. Method of Dynamic and Nonsmooth Optimization[M]. Philadelphia:SIAM, 1989. [47] Bazaraa M S, Goode J, Nashed M Z. On the cones of tangents with applications to mathematical programming[J]. Journal of Optimization Theory and Applications, 1974, 13(4):389-426. [48] Clarke F H. Necessary conditions for nonsmooth variational problems[C]//Optimal Control Theory and its Applications, 1974, 70-91. [49] Clarke F H. Generalized gradients and applications[J]. Transactions of the American Mathematical Society, 1975, 205:247-262. [50] Mordukhovich B. Maximum principle in the problem of time optimal response with nonsmooth constraints[J]. Journal of Applied Mathematics and Mechanics, 1976, 40(6):960-969. [51] Bonnans J F, Shapiro A. Perturbation Analysis of Optimization Problems[M]. New York:Springer, 2000. [52] Le H Y. Generalized subdifferentials of the rank function[J]. Optimization Letters, 2013, 7(4):731-743. [53] Blumensath T, Davies M E. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis and Applications, 2008, 14(5):629-654. [54] Blumensath T, Davies M. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27:265-274. [55] Bauschke H H, Luke D R, Phan H M, et al. Restricted normal cones and sparsity optimization with affine constraints[J]. Foundations of Computational Mathematics, 2014, 14(1):63-83. [56] Pan L L, Xiu N H, Zhou S L. On solutions of sparsity constrained optimization[J]. Journal of the Operations Research Society of China, 2015, 3(4):421-439. [57] Pan L L, Luo Z Y, Xiu N H. Restricted Robinson constraint qualification and optimality for cardinality-constrained cone programming[J]. Journal of Optimization Theory and Applications, 2017, 175(1):104-118. [58] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159. [59] Candès E J, Romberg J. ℓ1-magic:Recovery of sparse signals via convex programming[J/OL].[2020-07-21]. http://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf, 2005. [60] Van Den Berg E, Friedlander M P. Probing the Pareto frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing, 2008, 31(2):890-912. [61] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58(1):267-288. [62] Zou H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476):1418-1429. [63] Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2005, 67:301-320. [64] Cai T T, Zhang A. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices[J]. IEEE Transactions on Information Theory, 2014, 60(1):122-132. [65] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862. [66] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415. [67] Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization[J]. Proceedings of the National Academy of Sciences, 2003, 100(5):2197-2202. [68] Juditsky A, Nemirovski A. On verifiable sufficient conditions for sparse signal recovery via ℓ1 minimization[J]. Mathematical Programming, 2011, 127(1):57-88. [69] Zhang Y. Theory of compressive sensing via ℓ1-minimization:A non-RIP analysis and extensions[J]. Journal of the Operations Research Society of China, 2013, 1(1):79-105. [70] Zhao Y B. RSP-Based analysis for sparsest and least ℓ1-norm solutions to underdetermined linear systems[J]. IEEE Transactions on Signal Processing, 2013, 61(22):5777-5788. [71] Luo Z Y, Qin L X, Kong L C, et al. The nonnegative zero-norm minimization under generalized z-matrix measurement[J]. Journal of Optimization Theory and Applications, 2014, 160(3):854-864. [72] Kong L C, Sun J, Tao J Y, et al. Sparse recovery on Euclidean Jordan algebras[J]. Linear Algebra and its Applications, 2015, 465:65-87. [73] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223. [74] Khoramian S. An iterative thresholding algorithm for linear inverse problems with multiconstraints and its applications[J]. Applied and Computational Harmonic Analysis, 2012, 32(1):109-130. [75] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2:183-202. [76] Wen Z, Yin W, Goldfarb D, et al. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation[J]. SIAM Journal on Scientific Computing, 2010, 32(4):1832-1857. [77] 何炳生. 凸优化和单调变分不等式收缩算法的统一框架[J]. 中国科学:数学, 2018, 48(2):255-272. [78] He B S, Ma F, Yuan X M. Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems[J]. IMA Journal of Numerical Analysis, 2019, 40(2):1188-1216. [79] He B S, Ma F, Yuan X M. Optimally linearizing the alternating direction method of multipliers for convex programming[J]. Computational Optimization and Applications, 2020, 75:361-388. [80] He B S, Tao M, Yuan X M. Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming[J]. Mathematics of Operations Research, 2017, 42(3):662-691. [81] Yang J F. Compressive sensing and ℓ1-norm decoding by ADMM[J]. Science Focus, 2016, 11(6):47-51. [82] Yang J, Zhang Y. Alternating direction algorithms for ℓ1-problems in compressive sensing[J]. SIAM Journal on Science Computing, 2011, 33(1):250-278. [83] Li M, Sun D F, Toh K C. A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block[J]. Asia-Pacific Journal of Operational Research, 2015, 32(3):1550024. [84] Cui Y, Li X D, Sun D F, et al. On the convergence properties of a majorized ADMM for linearly constrained convex optimization problems with coupled objective functions[J]. Journal of Optimization Theory and Applications, 2016, 169:1013-1041. [85] Li M, Sun D F, Toh K C. A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization[J]. SIAM Journal on Optimization, 2016, 26(2):922-950. [86] Han D R, Sun D F, Zhang L W. Linear rate convergence of the alternating direction method of multipliers for convex composite quadratic and semi-definite programming[J]. Mathematics of Operations Research, 2015, 43(2):622-637. [87] Li X D, Sun D F, Toh K C. A highly efficient semismooth Newton augmented lagrangian method for solving lasso problems[J]. SIAM Journal on Optimization, 2016, 28(1):433-458. [88] Li X D, Sun D F, Toh K C. On efficiently solving the subproblems of a level-set method for fused lasso problems[J]. SIAM Journal on Optimization, 2018, 28(2):1842-1866. [89] Zass R, Shashua A. Nonnegative sparse PCA[J]. Advances in Neural Information Processing Systems, 2007, 19:1561. [90] Donoho D L, Tsaig Y. Fast solution of ℓ1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11):4789-4812. [91] Van de Geer S A. High-dimensional generalized linear models and the lasso[J]. The Annals of Statistics, 2008, 26(2):614-645. [92] Kakade S, Shamir O, Sindharan K, et al. Learning exponential families in high-dimensions:Strong convexity and sparsity[C]//AISTATS, 2010, 381-388. [93] Zhang Y, d.Aspremont A, El Ghaoui L. Sparse PCA:Convex relaxations, algorithms and applications[M]//Handbook on Semidefinite, Conic and Polynomial Optimization, New York:Springer, 2012, 915-940. [94] Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems via lq-minimization for 0< q ≤ 1[J]. Applied and Computational Harmonic Analysis, 2009, 26(3):395-407. [95] Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing[J]. Inverse Problems, 2008, 24(3):035020. [96] Fung G M, Mangasarian O L. Equivalence of minimal ℓ0 and ℓp-norm solutions of linear equalities, inequalities and linear programs for sufficiently small p[J]. Journal of Optimization Theory and Applications, 2011, 151(1):1-10. [97] Fan J, Kong L C, Wang L Q, et al. Variable selection in sparse regression with quadratic measurements[J]. Statistica Sinica, 2018, 28:1157-1178. [98] Xu Z B, Chang X Y, Xu F M, et al. ℓ1/2 regularization:A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1013-1027. [99] Zeng J S, Lin S B, Wang Y, et l. ℓ1/2 regularization:Convergence of iterative half thresholding algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(9):2317-2329. [100] Chen X J, Xu F M, Ye Y Y. Lower bound theory of nonzero entries in solutions of ℓ2-ℓp minimization[J]. SIAM Journal on Scientific Computing, 2010, 32(5):2832-2852. [101] Chen X J, Niu L F, Yuan Y X. Optimality conditions and a smoothing trust region Newton method for nonLipschitz optimization[J]. SIAM Journal on Optimization, 2013, 23(3):1528-1552. [102] Chen X J, Guo L, Lu Z S, et al. An augmented lagrangian method for non-Lipschitz nonconvex programming[J]. SIAM Journal on Numerical Analysis, 2017, 55(1):168-193. [103] Bian W, Chen X J, Ye Y Y. Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization[J]. Mathematical Programming, 2015, 149:301-327. [104] Zhang C, Chen X J. A smoothing active set method for linearly constrained non-Lipschitz nonconvex optimization[J]. SIAM Journal on Optimization, 2020, 30(1):1-30. [105] Nikolova M, Ng M K, Zhang S, et al. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization[J]. SIAM journal on Imaging Sciences, 2008, 1(1):2-25. [106] Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American statistical Association, 2001, 96(456):1348-1360. [107] Huang J, Ma S G, Xie H L, et al. A group bridge approach for variable selection[J]. Biometrika, 2009, 96(2):339-355. [108] Zhang C H. Nearly unbiased variable selection under minimax concave penalty[J]. The Annals of Statistics, 2010, 38(2):894-942. [109] Zhang T. Analysis of multi-stage convex relaxation for sparse regularization[J]. Journal of Machine Learning Research, 2010, 11(35):1081-1107. [110] Ong C S, An L T H. Learning sparse classifiers with difference of convex functions algorithms[J]. Optimization Methods and Software, 2013, 28(4):830-854. [111] Li H, Lin Z. Accelerated proximal gradient methods for nonconvex programming[J]. Nips, 2015,1:379-387. [112] Kurdyka K. On gradients of functions definable in o-minimal structures[J]. Annales de l'Institut Fourier, 1998, 48(3):769-783. [113] Bian W, Chen X J. A smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty[J]. SIAM Journal on Numerical Analysis, 2020, 58(1):858-883. [114] Soubies E, Blanc-Féraud L, Aubert G. A continuous exact ℓ0 penalty (CEL0) for least squares regularized problem[J]. SIAM Journal on Imaging Sciences, 2015, 8(3):1607-1639. [115] Thi H A L, Le H M, Nguyen V V, et al. A DC programming approach for feature selection in support vector machines learning[J]. Advances in Data Analysis and Classification, 2008, 2(3):259-278. [116] Gasso G, Rakotomamonjy A, Canu S. Recovering sparse signals with a certain family of nonconvex penalties and dc programming[J]. IEEE Transactions on Signal Processing, 2009, 57(12):4686-4698. [117] Thi H A L, Le H M, Tao P D. Feature selection in machine learning:an exact penalty approach using a difference of convex function algorithm[J]. Machine Learning, 2015, 101(1-3):163-186. [118] Le Thi H, Pham Dinh T, Le H, et al. Dc approximation approaches for sparse optimization[J]. European Journal of Operational Research, 2015, 244(1):26-46. [119] Lu Z, Zhang Y. Sparse approximation via penalty decomposition methods[J]. SIAM Journal on Optimization, 2013, 23(4):2448-2478. [120] Robinson S M. Stability theory for systems of inequalities, Part II:Differentiable nonlinear systems[J]. SIAM Journal on Numerical Analysis, 1976, 13(4):497-513. [121] Beck A, Hallak N. On the minimization over sparse symmetric sets:projections, optimality conditions, and algorithms[J]. Mathematics of Operations Research, 2016, 41(1):196-223. [122] Beck A, Hallak N. Proximal mapping for symmetric penalty and sparsity[J]. SIAM Journal on Optimization, 2018, 28(1):496-527. [123] Zhou S, Pan L, Xiu N. Subspace newton method for the ℓ0-regularized optimization[J]. arXiv:2004.05132, 2020. [124] Zhang H, Pan L L, Xiu N H. Optimality conditions for locally Lipschitz optimization with ℓ0-regularization[J]. Optimization Letters, 2020. [125] Guo L, Ye J J. Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs[J]. Mathematical Programming, 2018, 168(1):571-598. [126] Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations[J]. Constructive Approximation, 1997, 13(1):57-98. [127] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE transactions on Information Theory, 2009, 55(5):2230-2249. [128] Blanchard J D, Tanner J, Wei K. CGIHT:conjugate gradient iterative hard thresholding for compressed sensing and matrix completion[J]. Information and Inference, 2015, 4(4):289-327. [129] Bao C, Dong B, Hou L, et al. Image restoration by minimizing zero norm of wavelet frame coefficients[J]. Inverse Problems, 2016, 32(11):115004. [130] Lu Z. Iterative hard thresholding methods for ℓ0 regularized convex cone programming[J]. Mathematical Programming, 2014, 147(1):125-154. [131] Cheng W Y, Chen Z X, Hu Q J. An active set Barzilar-Borwein algorithm for ℓ0 regularized optimization[J]. Journal of Global Optimization, 2020, 76(4):769-791. [132] Soussen C, Idier J, Duan J, et al. Homotopy based algorithms for ℓ0-regularized least-squares[J]. IEEE Transactions on Signal Processing, 2015, 63(13):3301-3316. [133] Ito K, Kunisch K. A variational approach to sparsity optimization based on lagrange multiplier theory[J]. Inverse Problems, 2013, 30(1):015001. [134] Jiao Y, Jin B, Lu X. A primal dual active set with continuation algorithm for the ℓ0-regularized optimization problem[J]. Applied and Computational Harmonic Analysis, 2015, 39(3):400-426. [135] Huang J, Jiao Y L, Liu Y Y, et al. A constructive approach to ℓ0 penalized regression[J]. Journal of Machine Learning Research, 2018, 19:1-37. [136] Nikolova M. Description of the minimizers of least squares regularized with ℓ0-norm. uniqueness of the global minimizer[J]. SIAM Journal on Imaging Sciences, 2013, 6(2):904-937. [137] Nikolova M. Relationship between the optimal solutions of least squares regularized with ℓ0-norm and constrained by k-sparsity[J]. Applied and Computational Harmonic Analysis, 2016, 41(1):237-265. [138] Shen X, Pan W, Zhu Y, et al. On constrained and regularized high-dimensional regression[J]. Annals of the Institute of Statistical Mathematics, 2013, 65(5):807-832. [139] Chen X J, Pan L L, Xiu N H. Solution sets of three sparse optimization problems for multivariate regression[R]. Hong Kong:Hong Kong Polytechnic University, 2018. [140] Bertsimas D, Shioda R. Algorithm for cardinality-constrained quadratic optimization[J]. Computational Optimization and Applications, 2009, 43(1):1-22. [141] Bertsimas D, King A, Mazumder R. Best subset selection via a modern optimization lens[J]. The Annals of Statistics, 2015, 44(2):813-852. [142] Gotoh J y, Takeda A, Tono K. DC formulations and algorithms for sparse optimization problems[J]. Mathematical Programming, 2018, 169(1):141-176. [143] 潘丽丽. 稀疏约束优化的最优性理论与算法[D]. 北京:北京交通大学, 2017. [144] Beck A, Eldar Y C. Sparsity constrained nonlinear optimization:Optimality conditions and algorithms[J]. SIAM Journal on Optimization, 2013, 23(3):1480-1509. [145] Lu Z S. Optimization over sparse symmetric sets via a nonmonotone projected gradient method[J]. arXiv:1509.08581, 2015. [146] Lu Z, Zhang Y. Sparse approximation via penalty decomposition methods[J]. SIAM Journal on Optimization, 2013, 23(4):2448-2478. [147] Pan L L, Xiu N H, Fan J. Optimality conditions for sparse nonlinear programming[J]. Science China Mathematics, 2017, 60(5):759-776. [148] Zhao C, Luo Z Y, Li W Y, et al. Lagrangian duality and saddle points for sparse linear programming[J]. Science China Mathematics, 2019, 62(10):2015-2032. [149] Zhao C, Xiu N H, Qi H D, et al. A Lagrange-Newton algorithm for sparse nonlinear programming[J]. arXiv:2004.13257, 2020. [150] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597. [151] Needell D, Tropp J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3):301-321. [152] Elad M. Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing[M]. New York:Springer, 2010. [153] Bahmani S, Raj B, Boufounos P T. Greedy sparsity-constrained optimization[J]. Journal of Machine Learning Research, 2013, 14:807-841. [154] Kyrillidis A, Cevher V. Recipes on hard thresholding methods[C]//4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2011, 353-356. [155] Blumensath T, Davies M E. Normalized iterative hard thresholding:Guaranteed stability and performance[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):298-309. [156] Blumensath T. Accelerated iterative hard thresholding[J]. Signal Processing, 2012, 92(3):752-756. [157] Foucart S. Hard thresholding pursuit:an algorithm for compressive sensing[J]. SIAM Journal on Numerical Analysis, 2011, 49(6):2543-2563. [158] Zhou S L, Xiu N H, Qi H D. Global and quadratic convergence of Newton hard-thresholding pursuit[J]. arXiv:1901.02763, 2019. [159] Yuan X T, Li P, Zhang T. Gradient hard thresholding pursuit[J]. Journal of Machine Learning Research, 2018, 18:1-43. [160] Wang R, Xiu N H, Zhang C. Greedy projected gradient-newton method for sparse logistic regression[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2):527-538. [161] Jenatton R, Audibert J Y, Bach F. Structured variable selection with sparsity-inducing norms[J]. Journal of Machine Learning Research, 2009, 12:2777-2824. [162] 刘建伟, 崔立鹏, 罗雄麟. 组稀疏模型及其算法综述[J]. 电子学报, 2015, 43(004):776-782. [163] Meier L, van de Geer S, Bjhlmann P. The group lasso for logistic regression[J]. Journal of the Royal Statal Society:Series B (Statal Methodology), 2008, 70(1):53-71. [164] Lin Y Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society, 2006, 68(1):49-67. [165] Bogdan M, van den Berg E, Sabatti C, et al. SLOPE-Adaptive variable selection via convex optimization[J]. Annals of Applied Statistics, 2015, 9(3):1103-1140. [166] Eldar Y, Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11):5302-5316. [167] Stojnic M, Parvaresh F, Hassibi B. On the reconstruction of block-sparse signals with an optimal number of measurements[J]. IEEE Transactions on Signal Processing, 2009, 57(8). [168] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4):1982-2001. [169] Blumensath T, Davies M E. Sampling theorems for signals from the union of finite-dimensional linear subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(4):1872-1882. [170] Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals:Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6):3042-3054. [171] Duarte M F, Cevher V, Baraniuk R G. Model-based compressive sensing for signal ensembles[C]//2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2010. [172] Duarte M F, Eldar Y C. Structured compressed sensing:From theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9):4053-4085. [173] Baldassarre L, Bhan N, Cevher V, et al. Group-sparse model selection:Hardness and relaxations[J]. IEEE Transactions on Information Theory, 2016, 62(11). [174] Jain P, Rao N, Dhillon I. Structured sparse regression via greedy hard-thresholding[J]. arXiv:1602.06042, 2016. [175] Pan L L, Chen X J. Group sparse optimization for images recovery using capped folded concave functions[J]. SIAM Journal on Imaging Sciences, 2020. [176] Zhang Y J, Zhang N, Sun D F, et al. A proximal point dual Newton algorithm for solving group graphical lasso problems[J]. SIAM Journal on Optimization, 2020, 30(3):2197-2220. [177] Zhang Y J, Zhang N, Sun D F, et al. An efficient hessian based algorithm for solving large-scale sparse group lasso problems[J]. Mathematical Programming, 2020, 179:223-263. [178] Peng D T, Chen X J. Computation of second-order directional stationary points for group sparse optimization[J]. Optimization Methods and Software, 2020, 35:348-376. [179] Luo Z Y, Sun D F, Toh K C, et al. Solving the OSCAR and SLOPE models using a semismooth newton-based augmented lagrangian method[J]. Journal of Machine Learning Research, 2019, 20(106):1-25. [180] Chen X J, Toint P L. High-order evaluation complexity for convexly-constrained optimization with non-Lipschitzian group sparsity terms[J]. Mathematical Programming, 2020. [181] Beck A, Hallak N. Optimization problems involving group sparsity terms[J]. Mathematical Programming, 2019, 178:39-67. |