分类选择: 产品分类一 产品分类二 产品分类三 产品分类四 产品分类五
机器学习学习笔记(十七)—— 优化算法概述
作者:佚名    所属栏目:【产品分类三】    时间:2024-06-18

一、概观
scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:
1.非线性最优化
fmin -- 简单Nelder-Mead算法
fmin_powell -- 改进型Powell法
fmin_bfgs -- 拟Newton法
fmin_cg -- 非线性共轭梯度法
fmin_ncg -- 线性搜索Newton共轭梯度法
leastsq -- 最小二乘
2.有约束的多元函数问题
fmin_l_bfgs_b ---使用L-BFGS-B算法
fmin_tnc ---梯度信息
fmin_cobyla ---线性逼近
fmin_slsqp ---序列最小二乘法
nnls ---解|| Ax - b ||_2 for x>=0
3.全局优化
anneal ---模拟退火算法
brute --强力法
4.标量函数
fminbound
brent
golden
bracket
5.拟合
curve_fit-- 使用非线性最小二乘法拟合
6.标量函数求根
brentq ---classic Brent (1973)
brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名
bisect ---二分法
newton ---牛顿法
fixed_point
7.多维函数求根
fsolve ---通用
broyden1 ---Broyden’s first Jacobian approximation.
broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixing
excitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数
line_search ---找到满足强Wolfe的alpha值
check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化
fmin完整的调用形式是:
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。
from scipy.optimize import fmin #引入优化包def myfunc(x):
return x**2-4*x+8 #定义函数
x0 = [1.3] #猜一个初值
xopt = fmin(myfunc, x0) #求解
print xopt #打印结果
运行之后,给出的结果是:
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 16
Function evaluations: 32
[ 2.00001953]
程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。
除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:
from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):
return x**2-4*x+8
x0 = [1.3]
xopt1 = fmin(myfunc, x0)
print xopt1
print
xopt2 = fmin_powell(myfunc, x0)
print xopt2
print
xopt3 = fmin_bfgs(myfunc, x0)
print xopt3
print
xopt4 = fmin_cg(myfunc,x0)
print xopt4
给出的结果是:
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 16
Function evaluations: 32
[ 2.00001953]
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 53
1.99999999997
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 12
Gradient evaluations: 4
[ 2.00000001]
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 15
Gradient evaluations: 5
[ 2.]
我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。
在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。
有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

网站首页 关于我们 耀世动态 耀世注册 耀世登录 联系我们

电话:400-123-4567      手机:13800000000
E-mail:admin@youweb.com      联系人:张生
地址:广东省广州市天河区88号

Copyright © 2012-2018 耀世娱乐-耀世注册登录官方入口 版权所有      琼ICP备xxxxxxxx号

扫一扫  关注微信

平台注册入口